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SUMMARY

Suppose one wants to estimate some characteristics of an unknown finite
population. One can look at this problem as a problem of estimating a
functional 8 (F), of the unknown population distribution function F. A
simple estimator is given by 8 (Fn) where F, is the empirical distribution
function. In presence of some auxiliary information on another population
characteristic X it is possible to obtain an improved estimator of 0 (F).
Such estimators make use of the regression relationship between X and Y
to achieve this goal and thus are known as regression estimators. The major
application of this methodology can be found in survey sampling. In this
article, this methodology is looked at from an angle which is not restricted
only to finite populations. In this process the asymptotic distribution theory
is derived under quite general conditions. The modalities of this
improvement are also investigated. Also, a new class of regression
estimators is introduced. One major advantage of the proposed methodology
is that it can be applied in categorical and truncated problems without
running into the risk of producing estimators outside the parameter space.

Key words : Statistical functionals, Auxiliary information, Regression
estimators, Asymptotic distribution.

1. Introduction

Let {(X,Y),1<i<n} be a set of n independent and identically
distributed (i.i.d.) random observations. It is assumed that the marginal
distribution of X, is known ‘and is denoted by F,. The marginal distribution
of Y, say F, is unknown. We also assume that Y is a real-valued characteristic
of some population. An extension for multivariate characteristics  is
straightforward. In the above framework it is desired to estimate a real valued
functional of F, say 8 (F).

Such problems arise in various situations in practice where one uses an
auxiliary variable X to improve inference on the Y-variable. In survey literature,

one specific example occurs in the context of regression estimation for finite
population means. For a basic introduction to that methodology we refer to
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Royall [10] and Cochran [3]. Isaki and Fuller [7] studied the properties of such
estimators under linear regression relationship for various important sampling
schemes. The survey literature mainly concentrates on the estimation of the
population mean using this technique. The type of regression adjustment
required while estimating functionals other than mean is relatively less studied.
However, recently there has been some research in this direction. Kuk and Mak
[8] considered the problem of estimating the median of a finite population after
adjusting for auxiliary information. Also, in a recent paper Rao, Kovar and
Mantel [9] developed a method of estimating the population distribution function
of an unknown finite population using auxiliary information. Their method can
be used to estimate any functional of the population distribution.
A simple estimator of 0 (F) is given by :

A

6, = 0(F) (1.1)

where F_is the empirical distribution function of Y. Y, ..., Y . Itis naturally
required that 6 be defined on the space of all distribution functions.

The estimator defined through (1.1) does not utilize any possible regression
relationship between the Y and X characteristics and also the fact that Fy is

known. In the presence of a model for the conditional distribution of Y, given
X, it is possible to incorporate the auxiliary information to construct an

improved estimator. This is the basic philosophy behind regression estimation
methodology. The term regression estimator is often used to denote estimators
of the model parametefs in usual regression models. However, we shall stick
to the same-terminology even in this context.

In this article we consider the problem of estimating the unknown
population distribution (hence any functional) for an infinite population. The
infinite population arises in finite population problems as the superpopulation.
The idea was introduced in Royall {10]. In model based inference for finite
populations the superpopulation plays the most crucial role. The sampling design
becomes quite irrelevant in a model based analysis. There are controversies
over such model based inference. One may refer to Hansen, Madow and Tepping
(4] for a critical evaluation of model based and design based inference for -
finite population. The statistical methodology developed in this article can be
used to draw model based inference on a population (finite or. infinite). We
do not consider any design based inference here.

Suppose the conditional distribution of the Y variable given X is available.
Suppose that the conditional distributions are specified by a family of probability
distribution functions ‘ '
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{(Fiylx,y):x,y, R} (1.2)

where F (y!x,7) stands for the conditional probability of the even {Y, <y}
given (X, =x}. Here y is an unknown vector valued parameter taking values

in an open subset © of IR. For notational simplicity we shall use F (x,7) to
denote the distribution function in (1.2). :

" Let ?n denote the estimator of Y obtained from the data. Using @n :

I’En (y) = I F(ylx, ;n) d Fx (x) ' (1.3)
In view of (1.3) the regression adjusted estimator of 6 (F,) is given by
5,, = e(ﬁ,,) ‘ (1.9

As it turns out the adjusted estimator defined through ‘(‘1.4) is quite easy
to compute. When Y and X are related through a linear relationship the sampling -
properties of §_ are studied in great details. In Rao, Kovar and Mantel [9]

a different regression adjusted estimator of the populatioh distribution function
is considered. They first predict the unobserved part of the population through
a linear regression relationship and then consider the empirical distribution based
on the observed and the predicted part. This method has one drawback when
the population is categorical (like, Binomial) or truncated (like, Gamma). In
such cases weighted linear predictors of the unobserved part can become
negative or a fraction. The estimator defined through (1.4) does not face such
problems.

In this paper the main results include the derivation of the asymptotic
distribution of én. It is shown that n'? (én —0) is asymptotically normal under
some regularity conditions (provided, of course, that the parameter estimate ?n

is asymptg)\tically normal). From the results obtained by Huber (5}, it is known
that n'? (6, -8) is asymptotically normal if the functional 6 is continuously

differentiable in the space of distributions. We also compare the asymptotic
variances. It tums out that if we start with an efAﬁcient estimate of y, the
asymptotic variance of 6 is smaller than that of 6 .-

In Section 2, the main results are presented together with the technical
assumptions required to prove them. It is tried to keep the assumptions at a
level which would allow to apply the results to a broad class of examples on
one hand and on the other hand the assumptions can be verified in a given
situation without much difficulty. Various important examples are considered
and the consequences of the main results are studied in Section 3. In Section 4,
a new class of weighted regression estimators is introduced and their properties
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are studied. Some concluding remarks are made in Section 5 and the proofs
of thg main results are presented in the appendix. :

2. Main Results

Let this section begins with basic notations and assumptions. The key idea
of this article as described in the introduction is to put the covariate adjustment
technique under a general framework and show some applications. Because of

this reason, we shoot only for a set of assumptions under which the applications
we have in mind hold true.

First, assume certain regularity conditions on the model relating the X
and Y variables.

Assumption A :

1. F(ylx,7) has a density f (y | x, y) under a fixed measure u for all y and
almost all x. Moreover, the support of f (y1x,y) is free from y.

2. f lxy):= % f(ylx,y) exists almost everywhere (uxF,) in a
neighborhood B of the true Y- Moreover,

%j £y Ix, 1) dFx )= (1 x,7) dFy (x)

almost everywhere .
3. The following condition on L, continuity of f hold.

330 ubss BT Y IXD LY X, 7+ w)-£(0) (171 =0

The next assumption relates to certain smoothness property of the
functional 6.

Assumption B :

For some function VY with Epwf,<oo the following expansion holds:

BWF,+(1-w) F+u)) = 0®+wn ' ¥ vy ()
=t

+(1-w) wa(y)d(F(Y+U)—F)(y)

+op(max(|u|,n'm))

where F (y+ u) stands for the marginal of Y under Y+u (thus, F(y)=F).




ESTIMATING FINITE POPULATION PARAMETERS

Assumption C :

For some positive definite matrix I,
023, -7) = N@©,I)

The set of assumptions A are standard ones required for the validity of
usual asymptotic theory in parametric estimation (viz., Ibragimov and
Hasminskii [6]). The condition A3 requires certain L, continuity of the
derivative of f which is fairly straightforward to verify in the cases we have
in mind.

The condition B seems to be the hardest condition to verify. However
such a condition can not really be avoided. In specific situations one has-to
verify such a condition using recipe specific to the problem. In case the
functional is convex differentiable, the assumption B is automatically satisfied.
Many statistical functionals of interest like ‘median, are not differentiable in
the sense of Gateaux or Frechet. For such situations the assumption B needs
to be verified separately. For an excellent introduction to the theory of statistical
functionals we refer to the classic book by Huber [5]. = :

Nothing much needs to be said about the assumption C as it assumes
that the auxiliary parameter y is estimated with certain accuracy.

‘ Theorem 2.1. Under assumption ‘A, B and C the following assertions hold
true.

(i) Consistency :

8, — © in probability. S (2.1)

(ii) Asymptotic Normality :
n'?(§,-6) = N(O,I'ZD) @

Eye () £y 1%, ) dit (¥) d Fe (0
‘Cov (Y (), S(YIX, Ny

and S=% log f denotes the score function for the hodel.

The proof is relegated to the appendix. In the next résul_t we compare

the performances of 8 ax}ld 6 in terms of their asymptotic variances. Since the
asymptotic variance of 6_ depends on the dispersion of the initial estimator,
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it turns out that it is not possible to improve upon the performance of én for

any choice of the initial estimator of y. If y is estimated by an efficient estimator,
we gain in terms of asymptotic variance by using the regression estimator.

Define
1=ff £ yIx,PIf (yf)f,}')du(y)de(x).
S(Yly) = %mgj £(Y 1%, 1) d Fy (6)
I=Css 23)

where 1 is assumed to exist and be positive definite and for any two random
vectors U and V

Cyv = Cov{U,V}) = EUV

Theorem 2.2. Suppose there exists an estimator ?m of y with asymptotic
dispersion 77!, Also, let 6, denote the corresponding regression estimator. Then

. Asymp. Var (8,.) = Gy, 1! Cy,.s

A .
< Asymp. Var { gn) 2.9

The inequality in (2.4) is strict whenever (I —f) is po'sitjve definite.

Remark 1 : By Theorem 2.2 it is known that when one uses an efficient
initial estimator of Y. asymptotically it is beneficial to use regression
adjustments. Now the question is whether the efficient estimation of y is the
only way to gain in asymptotic efficiency. The answer to this question is quite
interesting. How much inefficiency one can permit in estimating y so that the
regression adjusted estimator of 8 is still more efficient than the simple estimator
depends on the multiple correlation between the influence function of © and
the likelihood score function of the stipulated model. This fact gives us a
criterion for deciding whether the regression adjustment for a particular
functional under a given model for the conditional distribution of Y given X
would be useful or not. The functional for which the range of improvement
is quite stringent (i.e., when one needs to estimate the auxiliary parameter Y
with high efficiency to get any improvement at all), a regression adjustment
may not be advisable. Because in such cases the performance of the regression
adjusted estimators for realistic sample sizes may not be that good. A Bootstrap
comparison between the simple and the regression estimator may give us a
better . insight into the problem in such cases, -
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Remark 2 : Recall that £(ylp)=] £(ylx y)dFy(x). Consider the
estimation of y from the likelihood '

1

Then an efficient estimate of y derived from this likelihood will have an
asymptotic dispersion 1~! which is greater than.7~! in a matrix sense. Thus,

one can not achieve an asymptotic variance of C‘:"w’ rt Cvp. o Therefore, this

alternative method of making regression adjustment is not recommended in this
regard. ‘

Corollary 2.1. Under the set-up of the theorems, the regression adjusted
estimator, 8, has asymptotically greater efficiency than the simple estimator,
A

0, if

(M2 < p7r (Wg S) T 25)

)‘méx

C,. 1 'Cys
where p* We S) = —F-—E—w?—?'.and A_,, denotes the maximum eigenvalue
o .

of a matrix.

Proof : By Theorem 2.1 we have
ry _ rt
Asymp. Var {8, } = CWF S ZC\VF S
12 12 t -1
< Apax UTELT) [CWF,S I C“,F'S]

The result follows from the above observation.

3. Applications

In this section, consider some applications of the theory developed so far.
We begin with the classical example of linear regression.

~ Example 1 : Suppose {(X,Y),1 <i<n}bea bivariate scatter where
the following regression model is assumed to hold :
F(ylx) = N(a+bx,o?) (3.1)

Therefore, in this example y = (a, b, o?) takes values in an open subset
of R®. Also let us denote the mean and the variance of the X characteristic
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by m, and v; réspectively. For this model it is well known that the MLE

— A —_
of a, b and o are 2,, =Y -b X b, =5,/ and

n
ct=n'Y (Yj—ﬁ = Do X)! respectively.

The regression adjusted estimators of the population mean and variance
are thus given by :

-~

m, = anML’“BnMme
= Y, + by (my - X,)

8,2 = Ol + D VX 3.2)

Therefore, in the linear regression case we end up with the familiar
regression estimators of the population mean and variance of the Y
characteristic. The properties of the estimators in (3.2) are discussed in detail
in the survey literature see, Isaki and Fuller [7] for example.

Example 2 : Here let {X,,Y), 1<i<n} be a sequence of i.id.

observations where Y variable takes only two values say, 0 or 1. We assume
a logistic regression relationship between X and Y, i.e.

t .
Pr{Y=11X=xy)=—22X1_ (3.3)
* 1+expxy

Now let ?n denote the MLE of y so that we have

N -1
" Asymp. Var (3, ) = | E {—2BXY _,p (3.4)
(1+expx'y)

The computation of the MLE for logistic regression is not difficult. Most
of the standard statistical packages have the provxsxon for the MLE in a logistic
regression problem. At any rate, once we have y the regression adjusted

estimator of the population proportion of Y is

AL €x p Yn .
= S EE— dFsy (x 3.5
po = o (P ® | 69
. t 1
and Asymp. Var { 6,,)=r* E —exEx—?—zxx‘ r (3.6
(I+expxy)

where T=E [ (1 +exp X'1) 2exp (X'y) X ]
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The advantage of using (3.5) is that it always gives us an estimate which
is between 0 and 1. The usual practice is to fit a linear relationship with
possible heteroscdascity between Y and X. But the estimate we get that may
be quite inferior to the MLE because a linear relationship between an indicator
variable and a continuous random vector may be a total misfit. The same
problem persists with the regression adjustment proposed by Rao, Kovar and

Mantel [9]. A
Example 3 : In this example, consider various location. functionals, i.e.,
9 (F) is defined as the solution of the equation : A
[vo-e®)dF@=0

for suitable choices of the function Y. The properties of such functionals are
extensively studied in the literature in the context of maximum likelihood and
robust estimation. See, Huber [5]. The influence function of 8 (F) is given by:
IF(y.FEy) = [EVI ' v -0®)
For the derivation of the above fact, refer to Beran [1].

Let us assume that the conditional structure is specified by (1.2). If we
estimate y with asymptotic dispersion %, it follows that the asymptotic variance
of the regression adjusted estimator o (F) is given by :

Asymp. Var {8, » = Cov {IF, S' }ZCov {IF,S )

The above formula gives a way of calculating the asymptotic variances
of regression adjusted estimators for a large class of robust location functionals.

4. A Family of Alternative Estimators

In the present framework one can construct the following family of
regression adjusted estimators of the distribution function F.

Fow®=wF,0+1-w) F, @ (4.1)

where w is a weight, 0Sw<1.

So far two extreme cases have been discussed, namely, the cases
w=0 and w=1. In this section we investigate the asymptotic behaviour of

the weighted regression estimator
9 nw =0 Fp, w) 4.2)
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If the asymptotic variance of 6:, . 1S minimized at w=w" then it is
advisable to use 9 nw* as the final version of the regression adjusted estimator,

However, there is one problem of using the optimally weighted regression
adjusted estimator. The problem being ‘that the optimal weight w* will depend
-on the unknown parameters of the model. Therefore we have to use a suitable
estimate of w” in the estimator which means changing the sampling distribution
of the final estimator. It is not very clear how it will affect its small sample
distribution. One can construct examples where the effect of using the
plugged-in estimator take away the advantage one gained by using the auxiliary
information in the first place. However, if we could have a way of estimating
y for which the optimal weight does not depend on the unknown model
parameters, we could use the plugged-in estimator without changing the
.-sampling distribution of the optimal estimator. Surprisingly, what turns out is
that the efficient estimation of the model parameter y has the two-fold advantage.
Firstly by Theorem 2.2, it has smaller asymptotic variance than the unadjusted
version. Secondly, the optimal choice of w* is also free from any model
parameter and, actually it is zero. The next theorem formalizes the above ideas..

Theorem 4.1. Assume A, B and C. Further suppose that ?n admits thef
following expansion '

0 @G -y) = n'? Y A (Y} X;, 1) +0, (1) (4.3)
j=1

Then

(i) n‘”(g nw—8) = N(O,r*(w)) (4.4) .

where r* (w) = w2 Cy, + (1 - w)? Cy,sCa, A Cy, s+ 2w (1 =w)Cy s Cy A

(ii) For a fixed A, the asymptotic variance of {anw) is minimized by

Cy.s Cy,A=Cy.5 Can Cy,s
Cow =25 Cy,a+Cy,s CanCy,s

(iiiy The choice A* = -I1's (i.e., the maximum likelihood score)

minimizes r*(w) over all choices of scores. In that case w" (A)=0 and
2 . -1 .
r-in = Cw.s I C\y,S'

(4.5)

w(A) =

m

The proof of the above result is deferred to the Appendix.

.
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5. Concluding Remarks

In this section consider a few issues which are not taken care of in this
article. The first one being the variance estimation problem. From the
expressions obtained for asymptotic variances it is clear that one can. simply
use a plugged-in estimator of the quantity. However, one can suggest other
methods of estimation. Among other methods the one which comes to the mind
first is the Bootstrap estimation of the asymptotic variance. This method usually
leads to better confidence interval estimates. Jackknifing is another possibility.

In this article the simple random sampling situation is essentially covered.
It will be interesting to extend the scope of this result for other schemes in
finite population sampling, like two stage stratified sampling. Another important
idea which emerges from this article is that the effectiveness of regression
adjustment for non-linear functionals depends on the type of the functional we
are interested in and the type of the conditional structure. Therefore it is
important to have a general idea about the effectiveness of this methodology
in estimating certain practically useful functionals for various conditional
structures which are used in practice. This is important because due to the
estimation of model parameters it is not very clear whether the regression
adjustment performs better than the simple estimation technique for relatively
smaller sample sizes. This can be determined only through the data.-

The next comment is regarding the testing of hypotheses about the
functional 8. One can develop Wald-type asymptotic test using the regression
adjusted estimator. It should have larger local asymptotic power than the
analogous test based on the simple estimator. However, the power comparison
for smaller sample sizes becomes quite intractable.

Finally, discuss the issue of robustness in this context. The dependence
on the model is quite evident from the construction of the regression estimators
that are proposed in the article. Thus the estimators may not be robust against
certain departures from the model. No good method of robustifying the estimator
F is known till this date. Therefore attempts should be made for a solution
of the problem of robustness in this context.

6. Appendix

The proofs of the results stated before are presented here. First we state a
Lemma. Let us define for fixed u € R” the following

RW = [ v Ely+u)—f) T1dp(y)

where f(yly+u)=f f(ylx,y+u)dF, (x) and f(y)=f(yly) represents the
true density of the Y variable.

o
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Lemma 6.1 : Under the assumptions A, B and C
) .t
R@)=u CWPS+O(Iul) as lul—>0

Proof : We can write R (u) as

R_(U)=IWF(Y)[L‘)f(ylhau)da]du(y) 6.2)

= pr(y) J‘; [Iu‘f(y|x,¥+au)de(x)}dadu(y)
, (6.3)
This follows from Assumption A. Therefore, we have
R(u) = u'Cy s+R (0

By the Mean Value Theorem

R*(u) = pr(y)[f; [f(ylx,y+au)—f(y|x,'y)]de(x)Jdadu(y)

Now for any t,

I eI TG Ik y+ ) - £ Tx )1 dy dFy 00

: IF(Y X, y+t) = £(YIX,y)!?
...| 172
< lul (Ev}) E{ oy J

Therefore, Fubini’s Theorem applies. Hence, after a change of the order
of integration we obtain

v _ 2
Y IX y+ ) —E(YIX, ) ]da

. n 'l 12
IR(u)I.S'J‘;(E‘If%:) '"'E(E‘Vf) E[ £(YIX,7)

6.4)

Next by the assumption B we have

lf(YIX,y+t')—f(Y|X,Y)|2J _ o

. 12
lim sup E(Evy}) E[ FOIX.7)

85-01ti<d

Thus, an application of the Dominated Convergence Theorem on the right
band side of (6.3) gives us

IR"(u)! = o, (lul)
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Hence the Lemma follows.
Proof of Theorem 2.1. By Lemma 6.1 and the assumption B we get
n'? (@, -0) = 02 @, -P'C Ve st % (nmlyn—yl)

3

Now the Theorem follows from assumptlon C.

Proof of Theorem 2 2 : For any vector b;tO

® r)2 (E (b'S) wel®

s‘(s\p%:)[I Lkl o f()) du ()} 6

The above inequality is a consequence of Cauchy-Schwartz inequality.
Also note that the equahty holds in (6 4) only when \up and b'S are lmearly
dependent. In that case (since \up is only a function of Y) we must have

E Var {b'S|Y }=0 which amounts to saying that b' (/- ) b=0 which can
not hold if (1— ) is positive definite.

Now let us define the following derisity

f(ylx7)
g, (x) =
y jf(y|xy)dpx(x)

almost everywhere d Fy and for every fixed y. This is actually the condmonal
density of X given Y. Then we can write
J (b £d Fy)?
f(y)
Thus agam by Cauchy-Schwartz we get

dp@) = f [J“(b‘ S) g (x)d Fx (x) ]2' f(du@) (6.6

(b

I[.[b 38(")de(x)]2 f(y)du(y) < ” dF dn

=b'1b ‘ 6.7

In (6. 6) an equahty holds if the score. functxon S, is degenerate which
can not hold under the assumptmn that I.is non-singular. -Hence

NG
b Ib wz
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2
Therefore, F'r7'r = sup (bl_l“) < Evi
. . . _b#0 bIb

Hence the Theorem.
Now proceed to prove the next Theorem.

Proof of Theorem 4.1 : Notice first that by virtue of the assumption C
and Lemma 6.1 the following asymptotic expansion holds :

0" (8, ~ 0) = win' 2} yp(Y)]

+ A-wWCy s I A(Y}, X, )]
+ 0, (1) (6.8)

Once the expansion (6.7) is obtained the part (i) of Theorem 4.1 follows by
the Central Limit Theorem. The remaining parts also follow from routine
differentiation.
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